逐步回归分析方法的基本思路是自动从大量可供选择的变量中选取最重要的变量,建立回归分析的预测或者解释模型。其基本思想是:将自变量逐个引入,引入的条件是其偏回归平方和经检验后是显著的。同时,每引入一个新的自变量后,要对旧的自变量逐个检验,剔除偏回归平方和不显著的自变量。这样一直边引入边剔除,直到既无新变量引入也无旧变量删除为止。它的实质是建立“最优”的多元线性回归方程。
依据上述思想,可利用逐步回归筛选并剔除引起多重共线性的变量,其具体步骤如下:先用被解释变量对每一个所考虑的解释变量做简单回归,然后以对被解释变量贡献最大的解释变量所对应的回归方程为基础,再逐步引入其余解释变量。经过逐步回归,使得最后保留在模型中的解释变量既是重要的,又没有严重多重共线性。
想要了解更多“逐步回归”的信息,请点击:逐步回归百科