1、常见组合:
3,4,5 : 勾三股四弦五
5,12,13 : 5·21(12)记一梁源生(13)
6,8,10: 连续的偶数
2、特殊组合:
连续的勾股数只有3,4,5
连续的偶数勾股数只有6,8,10
勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)。
扩展资料:
一、公式
a=m,b=(m^2 / k - k) / 2,c=(m^2 / k + k) / 2 ①
其中m ≥3
1、当m确定为任意一橡散态个 ≥3的奇数时,k={1,m^2的所有小于m的因子}
2、当m确定为任意一个 ≥4的偶数时,k={m^2 / 2的所有小掘迹于m的偶数因子}
二、常见组合套路
1、当a为大于1的奇数2n+1时,b=2n²+2n, c=2n²+2n+1。
实际上就是把a的平方数拆成两个连续自然数,例如:
n=1时(a,b,c)=(3,4,5)
n=2时(a,b,c)=(5,12,13)
n=3时(a,b,c)=(7,24,25)
2、当a为大于4的偶数2n时,b=n²-1, c=n²+1
也就是把a的一半的平方分别减1和加1,例如:
n=3时(a,b,c)=(6,8,10)
n=4时(a,b,c)=(8,15,17)
n=5时(a,b,c)=(10,24,26)
n=6时(a,b,c)=(12,35,37)
参考资料来源:百度百科-勾股数