念作:无穷大。
在集合论中对无穷有不同磨颂的定义。德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的“无穷”。两个无穷大量之和不一定是无穷大,有界量与无穷大量的乘积不一定是无穷大(如常数0就算是信稿有界函数),有限个无穷大量之积一定是无穷大。
性质:
两个无穷大量之和不一定是无穷大。
有界量与无穷大量的乘积不一定是无穷大(如常数0就算是有界函滑游孝数)。
有限个无穷大量之积一定是无穷大。
另外,一个数列不是无穷大量,不代表它就是有界的(如,数列1,1/2,3,1/3,……)。