达朗贝尔原理(D'Alembert's principle)是求解约束系统动力学问题的一个普遍原理,由法国数学家和物理学家J.达朗贝尔于1743年提出。
达朗贝尔在《动力学》一书中,提出了达朗贝尔原理,与牛顿第二定律相似,但其发展在于可以把动力学问题转化为静力学问题处理,还可以用平面静力的方法分析刚体的平面运动,这一原理使一些力学问题的分析简单化,而且为分析力学的创立打下了基础。达朗贝尔还对当时运动量度的争论提出了自己的看法,他认为两种量度是等价的,并提出了物体动量的变化与力的作用时间有关。达朗贝尔第一次用微分方程表示场,同时提出了著名的达朗贝尔原理——流体力学的一个原理,虽然存在一些问题,但是达朗贝尔第一次提出了流体速度和加速度分量的概念。达朗贝尔的力学知识为天文学领域做出了重要贡献。同时达朗贝尔发现了流体自转时平衡形式的一般结果,关于地球形状和自转的理论。
想要了解更多“达朗贝尔原理”的信息,请点击:达朗贝尔原理百科