有1个航友所导游带了1个旅游团到香港旅游,他看到了1个不错的4星级宾馆,便准备住那。
1天,导游约了那家宾馆的老板,他来到经理室,流建义(那家宾馆的老板)请导游坐下,那个导游自我介绍胞步指城到:“我是内地的导游,姓天,名伟,这次我带领了1个旅游团到香港旅游,听说你的宾馆环境舒适,服务周到,我们想来你们宾馆住。”
刘建义先生连忙热情地说:“欢迎,欢迎,不知贵团一共有多少人?”
“人嘛,还可以,是来自一个大团。”
刘建义先生心里一阵惊喜:1个大团,有是笔大生意!
作为个导游,天伟看出了刘建义先生的心思,他慢条斯理地说:“刘先生,如果你能算出我团人数,我们便住你360问答宾馆。”
“你请说吧。”
“如果我把我的团平均分成4组多出1人,再把每小组平均分成4份,结果又多出1人,再把分底的4小组分成4份,结果又多出1人,当然也包括我,请问我们至少有多少人?”
刘建义为了接下这笔生意,马上开始了思考。他不愧是精明的人,很快算出了答案:“至少85人。”
天伟高兴的说:“一点不错,就风烧府是85人,请问老板是怎老么算出来的?”
“人数最少的情况下是最后1次含减教临通4等分时,每人1份,由此推理得到:第3次之前有1×4+1=5(人),第2次分之前有5×4+1=21(人),第1次分之前有21×均界转愿内支总互4+1=85(人)。”
“好,条初远岁注效东磁我们就住这了。”
“请问你们有男女各多少人?”
“男55,女30。”
“我们这现在只有11人,7人,5人的房间了,你们想怎么住?”
“当然是先生安排了,但必须附局着男女分开,也不能有空床位。”
经过苦思冥想,刘建义终于得出最佳方案:男的2间11人房,4与修策究车观导形间7人房,1间5人房;女的1间11人房,2间7人房,1间5人房。
天伟看了刘建义海业起威尔的安排后,非常满意,马上办了住宿手续。
一桩大生首早已宜质读我促液观意做成了,虽然复杂了点企刻则导,但刘建义心里还是十分高兴
数学小论文:《容易忽略的答案》
大千世界,无奇不有,垂容落步艺经失占创在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城行儿溶临,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相在复距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下三带不间说他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.例仍效革低5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学小论文
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!
想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!
想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!
想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!