您的位置首页百科词条

给定正整数n和实数M,对于满足条件:(a1)^2+[a(n+1)]^

问题补充说明:给定正整数n和实数M,对于满足条件:(a1)^2+[a(n+1)]^2≤M^2的所有等差数列:a1,a2,a3…. ,试求S=a(n+1)+a(n+2)+……+a(2n+1) 的最大值。

给定正整数n和实数M,对于满足条件:(a1)^2+[a(n+1)]^

解法一由Cauchy不等式求解

S=a(n+1)+a(n+2)+……+a(2n+1)

=(n+1)*[a(n+1)+a(2n+1)]/2

=(n+1)*[3a(n+1)-a1]/2

=<[(n+1)/2]*√{[3^2+(-1)^2]*[(a(n+1))^2+(a1)^2]}

=<[(n+1)/2]*√(10M^2)。

所以S的最大值为[(n+1)*|M|*√10]/2。

解法二,设a1=|M|k*sint,a(n+1)=|M|k*cost,0<k≤1,0<t<2π,

则S=[(n+1)/2]*[a(n+1)+a(2n+1)]

=[(n+1)/2]*[a(n+1)+2a(n+1)-a1]

=[(n+1)/2]*[3|M|k*cost-|M|k*sint]

=[√10*|M|*k*(n+1)/2]*cos(t+x)

≤[√10*|M|*(n+1)/2]*cos(t+x)

≤[√10*|M|*(n+1)/2]

等号当且仅当k=1,t+x=2π时取得,其中锐角x满足

sinx=1/√10,cosx=3/√10。

解法三设a1=a,公差为d。则a(n+1)=a+nd,那么题设条件转化为

a^2+(a+nd)^2≤M^2(1)

由S=(n+1)*a(n+1)+n(n+1)d/2=(n+1)(a+nd)+n(n+1)d/2

<==>d=2[S-a(n+1)]/[3n(n+1)](2)

将(2)式(代入(1)得:

a^2{a+2[S-a(n+1)]/[3(n+1)]}^2≤M^2

<==>10a^2+4S*a/(n+1)-4S^2/(n+1)^2-9M^2≤0(3)

把(3)式视作二次函数f(a),f(a)≤0,则△≥0,即

[4S/(n+1)]^2≥40*[4S^2/(n+1)^2-9M^2]

<==>45M^2≥18S^2/(n+1)^2

<==>S≤[(n+1)|M|√10]/2。

当△=0,即a=|M|/√10,d=√[8M^2/(5n^2)]时有

Smax=[(n+1)|M|√10]/2。

证法四记a1=a,a(n+1)=b,公差为d。

S=a(n+1)+a(n+2)+…a(2n+1)=(n+1)b+n(n+1)d/2

故a+nd/2=S/(n+1)(1)

M^2≥a^2+b^2=(a-nd)^2+a^2=4(a+nd/2)^2/10+(4a-3nd)^2/10

故M^2≥4S^2/(n+1)^2/10

因此S^2≤10M^2*(n+1)/2

<==>S≤[(n+1)|M|√10]/2。