理发师悖晌唯神论
在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给宴亏自己刮脸的人。
可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。
那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。
“理发师悖论”是很容易解决的,解决的办法之一就是修正理发师的规矩,将他自己排除在规矩之外;可是严格的罗素悖论就不是这么容易解决的了。
扩展资料:
理发师悖论是罗素悖论的通俗举例,是由伯特兰·罗素在1901年提出的。罗素悖论的出现是由于朴素集合论对于元素的不加限制的定义。
由于当时集合论已成为数学理论的基础,这一悖论的出现直接导致了第三次数学危机,也引发了众多的数学家对这一问题的补救,最终形成了现在的公理化集合论。同时,罗素悖论的山孙出现促使数学家认识到将数学基础公理化的必要性。
罗素悖论:设集合S是由一切不属于自身的集合所组成,即“S={x|x ∉ S}”。
所谓罗素悖论指的是由罗素发现的一个集合论悖论。设集合S是由一切不属于自身的集合所组成,即“S={x|x ∉ S}”。那么问题是:S包含于S是否成立?首先,若S包含于S,则不符合x∉S,则S不包含于S;其次,若S不包含于S,则符合x∉S,S包含于S。
参考资料:百度百科-理发师悖论